题目内容
【题目】图1是某浴室花洒实景图,图2是该花洒的侧面示意图.已知活动调节点B可以上下调整高度,离地面CD的距离BC=160cm.设花洒臂与墙面的夹角为α,可以扭动花洒臂调整角度,且花洒臂长AB=30cm.假设水柱AE垂直AB直线喷射,小华在离墙面距离CD=120cm处淋浴.
(1)当α=30°时,水柱正好落在小华的头顶上,求小华的身高DE.
(2)如果小华要洗脚,需要调整水柱AE,使点E与点D重合,调整的方式有两种:
①其他条件不变,只要把活动调节点B向下移动即可,移动的距离BF与小华的身高DE有什么数量关系?直接写出你的结论;
②活动调节点B不动,只要调整α的大小,在图3中,试求α的度数.
(参考数据:≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
【答案】(1)125.4cm;(2)①BF=DE;②61.7°.
【解析】
(1)过点A作AG⊥CB的延长线于点G,交DE的延长线于点H,利用含30度角的直角三角形的性质即可求出答案.
(2)①由平行四边形的判定与性质即可知道BF=DE;
②由勾股定理可求出BD的长度,然后根据锐角三角函数的定义可求出∠1与∠2的度数,从而可求出α的度数.
解:(1)如图,过点A作AG⊥CB的延长线于点G,交DE的延长线于点H,
∵∠C=∠D=90°,
∴四边形GCDH为矩形,
∴GH=CD=120,DH=CG,∠H=90°,
在Rt△ABG中,
∠ABG=α=30°,AB=30,
∴AG=15,
∴AH=120﹣15=105,
∵AE⊥AB,
∴∠EAH=30°,
又∵∠H=90°,
∴EH=AHtan30°=35,
∴ED=HD﹣HE=160+15﹣35≈125.4(cm)
(2)①BF=DE;
②如图,连接BD
在Rt△BCD中,
BD==200,
∴sin∠1==0.6,
∴∠1≈36.9°,
在Rt△BAD中,AB=30.
∴sin∠2===0.15,
∴∠2≈8.6°,
∴∠3≈90°﹣8.6°=81.4°,
∴α=180°﹣∠1﹣∠3≈180°﹣36.9°﹣81.4°=61.7°.