题目内容

如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.
(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.

【答案】分析:(1)当∠B=30°时,∠A=60°,此时△ADE是等边三角形,则∠PEC=∠AED=60°,由此可证得∠P=∠B=30°;若△AEP与△BDP相似,那么∠EAP=∠EPA=∠B=∠P=30°,此时EP=EA=1,即可在Rt△PEC中求得CE的长;
(2)若BD=BC,可在Rt△ABC中,由勾股定理求得BD、BC的长;过C作CF∥DP交AB于F,易证得△ADE∽△AFC,根据得到的比例线段可求出DF的长;进而可通过证△BCF∽△BPD,根据相似三角形的对应边成比例求得BP、BC的比例关系,进而求出BP、CP的长;在Rt△CEP中,根据求得的CP的长及已知的CE的长即可得到∠BPD的正切值;
(3)过点D作DQ⊥AC于Q,可用未知数表示出QE的长,根据∠BPD(即∠EDQ)的正切值即可求出DQ的长;在Rt△ADQ中,可用QE表示出AQ的长,由勾股定理即可求得EQ、DQ、AQ的长;易证得△ADQ∽△ABC,根据得到的比例线段可求出BD、BC的表达式,进而可根据三角形周长的计算方法得到y、x的函数关系式.
解答:解:(1)∵∠B=30°,∠ACB=90°,
∴∠BAC=60°.
∵AD=AE,
∴∠AED=∠CEP=60°,
∴∠EPC=30°.
∴△BDP为等腰三角形.
∵△AEP与△BDP相似,
∴∠EPA=∠DPB=30°,
∴AE=EP=1.
∴在Rt△ECP中,EC=EP=

(2)设BD=BC=x.
在Rt△ABC中,由勾股定理,得:
(x+1)2=x2+(2+1)2
解之得x=4,即BC=4.
过点C作CF∥DP.
∴△ADE与△AFC相似,
,即AF=AC,即DF=EC=2,
∴BF=DF=2.
∵△BFC与△BDP相似,
,即:BC=CP=4.
∴tan∠BPD=

(3)过D点作DQ⊥AC于点Q.
则△DQE与△PCE相似,设AQ=a,则QE=1-a.

∴DQ=3(1-a).
∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2
即:12=a2+[3(1-a)]2
解之得
∵△ADQ与△ABC相似,


∴△ABC的周长
即:y=3+3x,其中x>0.
点评:此题主要考查了直角三角形的性质、相似三角形的判定和性质以及勾股定理等知识的综合应用能力,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网