题目内容

【题目】如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为

【答案】2
【解析】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,

连接OB,OA′,AA′,

∵AA′关于直线MN对称,

=

∵∠AMN=40°,

∴∠A′ON=80°,∠BON=40°,

∴∠A′OB=120°,

过O作OQ⊥A′B于Q,

在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=2

即PA+PB的最小值2

所以答案是:2

【考点精析】本题主要考查了圆心角、弧、弦的关系的相关知识点,需要掌握在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网