题目内容
【题目】阅读下列材料:
《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”
译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?
结合你学过的知识,解决下列问题:
(1)若设母鸡有x只,公鸡有y只,
① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x,y的式子表示)
②根据题意,列出一个含有x,y的方程:__________________;
(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?
(3)除了问题(2)中的解之外,请你再直接写出两组符合“百鸡问题”的解.
【答案】解:(1)①, ;②;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;②公鸡有8只,母鸡有11只,小鸡有81只;③公鸡有0只,母鸡有25只,小鸡有75只.
【解析】试题分析:(1)设母鸡有x只,公鸡有y只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;
(2)设母鸡有x只,公鸡有y只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;
(3)解不定方程即可.
试题解析:解:(1)①, ;② ;
(2)设母鸡有x只,公鸡有y只,根据题意,得:
,解得, (只),
答:母鸡有18只,公鸡有4只,小鸡有78只.
(3)以下三组答案,写出其中任意两组即可:
①公鸡有12只,母鸡有4只,小鸡有84只;
②公鸡有8只,母鸡有11只,小鸡有81只;
③公鸡有0只,母鸡有25只,小鸡有75只.