题目内容

已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数。

 

【答案】

∠EGB=60°,∠HGQ=30°

【解析】

试题分析:由MN⊥AB,MN⊥CD可得AB∥CD,根据平行线的性质可得∠EGB=∠EQH,再结合∠GQC=120°即可求得∠EGB和∠HGQ的度数。

∵MN⊥AB,MN⊥CD

∴∠MGB=∠MHD=90°

∴AB∥CD

∴∠EGB=∠EQH

∵∠EQH=180°-∠GQC=180°-120°=60°

∴∠EGB=60°

∴∠EGM=90°-∠EGB=30°

∴∠EGB=60°,∠HGQ=30°.

考点:本题考查的是平行线的判定和性质

点评:解答本题的关键是熟练掌握垂直于同一条直线的两条直线互相平行;两直线平行,同位角相等.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网