题目内容

【题目】在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为

【答案】3或
【解析】解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,
∴CB2+PB2=CP2
∴△CPB为直角三角形,∠CBP=90°,
∴CB⊥PB,
∴PB=P′B=4,
∵∠C=90°,
∴PB∥AC,
而PB=AC=4,
∴四边形ACBP为矩形,
∴PA=BC=3,
在Rt△APP′中,∵PA=3,PP′=8,
∴P′A= =
∴PA的长为3或
故答案为3或

连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2 , 则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A= ,从而得到满足条件的PA的长为3或

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网