题目内容

【题目】如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1 , S2 , 则S1+S2的值为

【答案】17
【解析】解:如图,
设正方形S1的边长为x,
∵△ABC和△CDE都为等腰直角三角形,
∴AB=BC,DE=DC,∠ABC=∠D=90°,
∴sin∠CAB=sin45°= = ,即AC= BC,同理可得:BC=CE= CD,
∴AC= BC=2CD,又AD=AC+CD=6,
∴CD= =2,
∴EC2=22+22 , 即EC=2
∴S1的面积为EC2=2 ×2 =8;
∵∠MAO=∠MOA=45°,
∴AM=MO,
∵MO=MN,
∴AM=MN,
∴M为AN的中点,
∴S2的边长为3,
∴S2的面积为3×3=9,
∴S1+S2=8+9=17.
所以答案是:17.

【考点精析】通过灵活运用正方形的性质和相似三角形的判定与性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网