题目内容
一个圆锥的侧面积是底面面积的2倍.它的侧面展开图是一个圆心角为________的扇形.
180°
分析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.
解答:设母线长为R,底面半径为r,
∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,
∵侧面积是底面积的2倍,
∴R=2r,
设圆心角为n,有 =2πr=πR,
∴n=180°.
故答案为:180°.
点评:本题考查了圆锥的计算,解题的关键是正确的利用了扇形面积公式,弧长公式,圆的周长公式求解.
分析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.
解答:设母线长为R,底面半径为r,
∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,
∵侧面积是底面积的2倍,
∴R=2r,
设圆心角为n,有 =2πr=πR,
∴n=180°.
故答案为:180°.
点评:本题考查了圆锥的计算,解题的关键是正确的利用了扇形面积公式,弧长公式,圆的周长公式求解.
练习册系列答案
相关题目