题目内容
【题目】某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204.
(1)写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);
(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
【答案】当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
【解析】试题分析:(1)商场的利润是由每件商品的利润乘每天的销售的数量所决定.在这个问题中,每件服装的利润为(x-42),而销售的件数是(-3x+204),由销售利润y=(售价-成本)×销售量,那么就能得到一个y与x之间的函数关系,这个函数是二次函数.
(2)要求销售的最大利润,就是要求这个二次函数的最大值.
试题解析:
解:(1)由题意,销售利润y与每件的销售价x之间的函数关系为
y=(x-42)(-3x+204),即y=-3x2+330x-8568
(2)配方,得y=-3(x-55)2+507
∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
【题目】为了解某县2011年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:
成绩等级 | A | B | C | D |
人数 | 60 | x | y | 10 |
百分比 | 30% | 50% | 15% | m |
请根据以上统计图表提供的信息,解答下列问题:
⑴本次抽查的学生有___________________名;
⑵表中x,y和m所表示的数分别为:x=________,y=______,m=_________;
⑶请补全条形统计图;
⑷根据抽样调查结果,请你估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数.
【题目】利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.
(1)请分别用含x的代数式表示y和W(把结果填入下表):
销售单价(元) | x |
销售量y(件) | |
销售利润W(元) |
(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?