题目内容
【题目】如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为 n mile.(结果取整数,参考数据: ≈1.7, ≈1.4)
【答案】102
【解析】解:过P作PD⊥AB,垂足为D,
∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,
∴∠MPA=∠PAD=60°,
∴PD=APsin∠PAD=86× =43 ,
∵∠BPD=45°,
∴∠B=45°.
在Rt△BDP中,由勾股定理,得
BP= = =43 × ≈102(n mile).
所以答案是:102.
【考点精析】利用关于方向角问题对题目进行判断即可得到答案,需要熟知指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.
练习册系列答案
相关题目