题目内容
【题目】已知抛物线y=x2+2px+2p﹣2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.
【答案】(1)见解析 (2)1
【解析】
试题(1)先判断出△的符号即可得出结论;
(2)设A(x1,0),B(x2,0),利用两点间的距离公式即可得出|AB|的表达式,设顶点M(a,b),再把原式化为顶点式的形式,即可得到b=﹣(p﹣1)2﹣1,根据二次函数的最值及三角形的面积公式即可解答.
试题解析:解:(1)∵△=4p2﹣8p+8=4(p﹣1)2+4>0,∴抛物线与x轴必有两个不同交点.
(2)设A(x1,0),B(x2,0),则|AB|2=|x2﹣x1|2=(x1+x2)2﹣4x1x2=4p2﹣8p+8=4(p﹣1)2+4,∴|AB|=2.
又设顶点M(a,b),由y=(x+p)2﹣(p﹣1)2﹣1.
得:b=﹣(p﹣1)2﹣1.
当p=1时,|b|及|AB|均取最小,此时S△ABM=|AB||b|取最小值1.
练习册系列答案
相关题目