题目内容

22、已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.
分析:(1)要证△ABC≌△DEF,可根据SAS判定.
(2)由△ABC≌△DEF可证∠ACB=∠DFE,即证GF=GC.
解答:证明:(1)∵BF=CE,
∴BF+FC=CE+FC,即BC=EF.
又∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
又∵AB=DE,
∴△ABC≌△DEF.

(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE.
∴GF=GC.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网