题目内容
【题目】阅读材料,回答问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为,,所与,与互为有理化因式.
(1)的有理化因式是 ;
(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
,
用上述方法对进行分母有理化.
(3)利用所需知识判断:若,,则的关系是 .
(4)直接写结果: .
【答案】(1);(2);(3)互为相反数;(4)2019
【解析】
(1)根据互为有理化因式的定义利用平方差公式即可得出;
(2)原式分子分母同时乘以分母的有理化因式,化简即可;
(3)将分母有理化,通过结果即可判断;
(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.
解:(1)∵,
∴的有理化因式是;
(2)=;
(3)∵,,
∴a和b互为相反数;
(4)
=
=
=
=,
故原式的值为.
练习册系列答案
相关题目