题目内容

【题目】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.

(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.

【答案】
(1)证明:连结OA、OD,如图,

∵D为BE的下半圆弧的中点,

∴OD⊥BE,

∴∠D+∠DFO=90°,

∵AC=FC,

∴∠CAF=∠CFA,

∵∠CFA=∠DFO,

∴∠CAF=∠DFO,

而OA=OD,

∴∠OAD=∠ODF,

∴∠OAD+∠CAF=90°,即∠OAC=90°,

∴OA⊥AC,

∴AC是⊙O的切线


(2)解:∵圆的半径R=5,EF=3,

∴OF=2,

在Rt△ODF中,∵OD=5,OF=2,

∴DF= =


【解析】(1)根据弧的性质,D为BE的下半圆弧的中点,得到OD⊥BE,∠D+∠DFO=90°,又AC=FC,得到∠CAF=∠CFA,因为∠CFA=∠DFO,得到∠CAF=∠DFO,而OA=OD,得到∠OAD=∠ODF,∠OAD+∠CAF=90°,即∠OAC=90°,所以OA⊥AC,由切线的判定方法得到AC是⊙O的切线;(2)由圆的半径R=5,得到OF=2,在Rt△ODF中,由勾股定理求出DF的长
【考点精析】认真审题,首先需要了解切线的判定定理(切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网