题目内容
【题目】如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【解析】
试题因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.
因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,
这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,
k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,
若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),
由此可知,停棋的情形与k=t时相同,
故第2,4,5格没有停棋,
即这枚棋子永远不能到达的角的个数是3.
故选D.
练习册系列答案
相关题目