题目内容
【题目】如图,点E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)试判断四边形AECF的形状;
(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.
【答案】(1)四边形AECF为平行四边形;(2)见解析
【解析】
试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.
(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.
(1)解:四边形AECF为平行四边形.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
又∵BE=DF,∴AF=CE,
∴四边形AECF为平行四边形;
(2)证明:∵AE=BE,∴∠B=∠BAE,
又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,
∴∠BCA=∠CAE,
∴AE=CE,
又∵四边形AECF为平行四边形,
∴四边形AECF是菱形.
练习册系列答案
相关题目