题目内容

【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:DE∥AC.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴AD=BC,AB=CD,

又∵AC是折痕,

∴BC=CE=AD,

AB=AE=CD,

在△ADE与△CED中,

∴△ADE≌△CED(SSS)


(2)证明:∵△ADE≌△CED,

∴∠EDC=∠DEA,

又∵△ACE与△ACB关于AC所在直线对称,

∴∠OAC=∠CAB,

∵∠OCA=∠CAB,

∴∠OAC=∠OCA,

∴2∠OAC=2∠DEA,

∴∠OAC=∠DEA,

∴DE∥AC


【解析】(1)根据矩形的性质和折叠的性质可得BC=CE=AD,AB=AE=CD,根据SSS可证△ADE≌△CED(SSS);(2)根据全等三角形的性质可得∠EDC=∠DEA,由于△ACE与△ACB关于AC所在直线对称,可得∠OAC=∠CAB,根据等量代换可得∠OAC=∠DEA,再根据平行线的判定即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网