题目内容
【题目】如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y= 的图象经过点C,一次函数y=ax+b的图象经过A,C两点.
(1)求反比例函数与一次函数的解析式;
(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
【答案】
(1)解:∵点A的坐标为(0,1),点B的坐标为(0,﹣2),
∴AB=1+2=3,
∵四边形ABCD为正方形,
∴Bc=3,
∴C(3,﹣2),
把C(3,﹣2)代入y= 得k=3×(﹣2)=﹣6,
∴反比例函数解析式为y=﹣ ,
把C(3,﹣2),A(0,1)代入y=ax+b得 ,
解得 ,
∴一次函数解析式为y=﹣x+1
(2)解:设P(t,﹣ ),
∵△OAP的面积恰好等于正方形ABCD的面积,
∴ ×1×|t|=3×3,解得t=18或t=﹣18,
∴P点坐标为(18,﹣ )或(﹣18, ).
【解析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)设P(t,﹣ ),根据三角形面积公式和正方形面积公式得到 ×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目