题目内容
【题目】阅读下列材料:
问题:如图1,在平行四边形ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G.使得∠EGB=∠EAB,连接AG.
求证:EG=AG+BG.
小明同学的思路是:作∠CAM=∠EAB交CE于点H,构造全等三角形,经过推理解决问题.
参考小明同学的思路,探究并解决下列问题:
(1)完成上面问题中的证明;
(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EC、AG、BG之间的数量关系,并证明你的结论.
解:线段EG、AG、BG之间的数量关系为___________________________________________________.证明:
【答案】(1)详见解析;(2)EG+BG=AG,证明详见解析.
【解析】
(1)作∠GAH=∠EAB交GE于点H,证△ABG≌OAEH,再证ΔACH是等边三角形,得AG=HG ,EG=AG+BG;(2)作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE,证ΔABG≌ΔAEH,得BG=EH,AG=AH,再证ΔAGH是等腰直角三角形,可得AG=HG.故EG+BG=AG.
(1)证明:如图1,作∠GAH=∠EAB交GE于点H,
则∠GAB=∠HAE.
∵∠EAB=∠EGB,∠AOE=∠BOF,
∴∠ABG=∠AEH
在ΔABG和ΔAEH中
所以△ABG≌OAEH
∴BG=EH,AG=AH
∵∠GAH=∠EAB=60°
∴ΔACH是等边三角形
∴AG=HG.
∴EG=AG+BG
(2)EG+BG=AG
证明:
如图2,作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE
∵∠EGB=∠EAB=90°
∴∠ABG+∠AEG=∠AEG+∠AEH=180°
∴∠ABG=∠AEH.
在ΔABG和ΔAEH中
∴ΔABG≌ΔAEH
∴BG=EH,AG=AH
∵∠GAH=∠EAB=90°
ΔAGH是等腰直角三角形
∴AG=HG
∴EG+BG=AG