ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Õý·½ÐÎOABCµÄ±ß³¤Îª2cm£¬µãA¡¢C·Ö±ðÔÚyÖáµÄ¸º°ëÖáºÍxÖáµÄÕý°ëÖáÉÏ£¬Å×ÎïÏßy=ax2+bx+c¾¹ýµãA¡¢BºÍD(4£¬-2 |
3 |
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©Èç¹ûµãPÓɵãA³ö·¢ÑØAB±ßÒÔ2cm/sµÄËÙ¶ÈÏòµãBÔ˶¯£¬Í¬
ʱµãQÓɵãB³ö·¢ÑØBC±ßÒÔ1cm/sµÄËÙ¶ÈÏòµãCÔ˶¯£¬µ±ÆäÖÐÒ»µãµ½´ïÖÕµãʱ£¬ÁíÒ»µãÒ²Ëæֹ֮ͣÔ˶¯£®ÉèS=PQ2£¨cm2£©
¢ÙÊÔÇó³öSÓëÔ˶¯Ê±¼ätÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ötµÄÈ¡Öµ·¶Î§£»
¢Úµ±SÈ¡
5 |
4 |
£¨3£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÇóµãM£¬Ê¹µÃMµ½D¡¢AµÄ¾àÀëÖ®²î×î´ó£¬Çó³öµãMµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽÊÇy=ax2+bx+c£¬Çó³öA¡¢B¡¢DµÄ×ø±ê´úÈë¼´¿É£»
£¨2£©¢ÙÓɹ´¹É¶¨Àí¼´¿ÉÇó³ö£¬¢Ú¼ÙÉè´æÔÚµãR£¬¿É¹¹³ÉÒÔP¡¢B¡¢R¡¢QΪ¶¥µãµÄƽÐÐËıßÐΣ¬Çó³öP¡¢QµÄ×ø±ê£¬ÔÙ·ÖΪÁ½ÖÖÖÖÇé¿ö£ºA¡¢B¡¢C¼´¿É¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊÇó³öRµÄ×ø±ê£®
£¨3£©A¹ØÓÚÅ×ÎïÏߵĶԳÆÖáµÄ¶Ô³ÆµãΪB£¬¹ýB¡¢DµÄÖ±ÏßÓëÅ×ÎïÏߵĶԳÆÖáµÄ½»µãΪËùÇóM£¬Çó³öÖ±ÏßBDµÄ½âÎöʽ£¬°ÑÅ×ÎïÏߵĶԳÆÖáx=1´úÈë¼´¿ÉÇó³öMµÄ×ø±ê£®
£¨2£©¢ÙÓɹ´¹É¶¨Àí¼´¿ÉÇó³ö£¬¢Ú¼ÙÉè´æÔÚµãR£¬¿É¹¹³ÉÒÔP¡¢B¡¢R¡¢QΪ¶¥µãµÄƽÐÐËıßÐΣ¬Çó³öP¡¢QµÄ×ø±ê£¬ÔÙ·ÖΪÁ½ÖÖÖÖÇé¿ö£ºA¡¢B¡¢C¼´¿É¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊÇó³öRµÄ×ø±ê£®
£¨3£©A¹ØÓÚÅ×ÎïÏߵĶԳÆÖáµÄ¶Ô³ÆµãΪB£¬¹ýB¡¢DµÄÖ±ÏßÓëÅ×ÎïÏߵĶԳÆÖáµÄ½»µãΪËùÇóM£¬Çó³öÖ±ÏßBDµÄ½âÎöʽ£¬°ÑÅ×ÎïÏߵĶԳÆÖáx=1´úÈë¼´¿ÉÇó³öMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽÊÇy=ax2+bx+c£¬
¡ßÕý·½Ðεı߳¤2£¬
¡àBµÄ×ø±ê£¨2£¬-2£©AµãµÄ×ø±êÊÇ£¨0£¬-2£©£¬
°ÑA£¨0£¬-2£©£¬B£¨2£¬-2£©£¬D£¨4£¬-
£©´úÈëµÃ£º
£¬
½âµÃa=
£¬b=-
£¬c=-2£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=
x2-
x-2£¬
´ð£ºÅ×ÎïÏߵĽâÎöʽΪ£ºy=
x2-
x-2£®
£¨2£©¢ÙÓÉͼÏóÖª£ºPB=2-2t£¬BQ=t£¬
¡àS=PQ2=PB2+BQ2£¬
=£¨2-2t£©2+t2£¬
¼´S=5t2-8t+4£¨0¡Üt¡Ü1£©£®
´ð£ºSÓëÔ˶¯Ê±¼ätÖ®¼äµÄº¯Êý¹ØϵʽÊÇS=5t2-8t+4£¬tµÄÈ¡Öµ·¶Î§ÊÇ0¡Üt¡Ü1£®
¢Ú½â£º¼ÙÉè´æÔÚµãR£¬¿É¹¹³ÉÒÔP¡¢B¡¢R¡¢QΪ¶¥µãµÄƽÐÐËıßÐΣ®
¡ßS=5t2-8t+4£¨0¡Üt¡Ü1£©£¬
¡àµ±S=
ʱ£¬5t2-8t+4=
£¬µÃ20t2-32t+11=0£¬
½âµÃt=
£¬t=
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
´ËʱµãPµÄ×ø±êΪ£¨1£¬-2£©£¬QµãµÄ×ø±êΪ£¨2£¬-
£©£¬
ÈôRµã´æÔÚ£¬·ÖÇé¿öÌÖÂÛ£º
£¨i£©¼ÙÉèRÔÚBQµÄÓұߣ¬Èçͼ£¨1£©Ëùʾ£¬ÕâʱQR=PB£¬RQ¡ÎPB£¬
ÔòRµÄºá×ø±êΪ3£¬RµÄ×Ý×ø±êΪ-
£¬
¼´R£¨3£¬-
£©£¬
´úÈëy=
x2-
x-2£¬×óÓÒÁ½±ßÏàµÈ£¬
¡àÕâʱ´æÔÚR£¨3£¬-
£©Âú×ãÌâÒ⣻
£¨ii£©¼ÙÉèRÔÚQBµÄ×ó±ßʱ£¬ÕâʱPR=QB£¬PR¡ÎQB£¬
ÔòR£¨1£¬-
£©´úÈ룬y=
x2-
x-2£¬
×óÓÒ²»ÏàµÈ£¬¡àR²»ÔÚÅ×ÎïÏßÉÏ£®
×ÛÉÏËùÊö£¬´æÔÚÒ»µãR£¨3£¬-
£©Âú×ãÌâÒ⣮
Ôò´æÔÚ£¬RµãµÄ×ø±êÊÇ£¨3£¬-
£©£»
£¨3£©Èçͼ£¨2£©£¬M¡äB=M¡äA£¬
¡ßA¹ØÓÚÅ×ÎïÏߵĶԳÆÖáµÄ¶Ô³ÆµãΪB£¬¹ýB¡¢DµÄÖ±ÏßÓëÅ×ÎïÏߵĶԳÆÖáµÄ½»µãΪËùÇóM£¬
ÀíÓÉÊÇ£º¡ßMA=MB£¬ÈôM²»ÎªLÓëDBµÄ½»µã£¬ÔòÈýµãB¡¢M¡¢D¹¹³ÉÈý½ÇÐΣ¬
¡à|MD|-|MB|£¼|DB|£¬
¼´Mµ½D¡¢AµÄ¾àÀëÖ®²îΪ|DB|ʱ£¬²îÖµ×î´ó£¬
ÉèÖ±ÏßBDµÄ½âÎöʽÊÇy=kx+b£¬°ÑB¡¢DµÄ×ø±ê´úÈëµÃ£º
£¬
½âµÃ£ºk=
£¬b=-
£¬
¡ày=
x-
£¬
Å×ÎïÏßy=
x2-
x-2µÄ¶Ô³ÆÖáÊÇx=1£¬
°Ñx=1´úÈëµÃ£ºy=-
¡àMµÄ×ø±êΪ£¨1£¬-
£©£»
´ð£ºMµÄ×ø±êΪ£¨1£¬-
£©£®
¡ßÕý·½Ðεı߳¤2£¬
¡àBµÄ×ø±ê£¨2£¬-2£©AµãµÄ×ø±êÊÇ£¨0£¬-2£©£¬
°ÑA£¨0£¬-2£©£¬B£¨2£¬-2£©£¬D£¨4£¬-
2 |
3 |
|
½âµÃa=
1 |
6 |
1 |
3 |
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=
1 |
6 |
1 |
3 |
´ð£ºÅ×ÎïÏߵĽâÎöʽΪ£ºy=
1 |
6 |
1 |
3 |
£¨2£©¢ÙÓÉͼÏóÖª£ºPB=2-2t£¬BQ=t£¬
¡àS=PQ2=PB2+BQ2£¬
=£¨2-2t£©2+t2£¬
¼´S=5t2-8t+4£¨0¡Üt¡Ü1£©£®
´ð£ºSÓëÔ˶¯Ê±¼ätÖ®¼äµÄº¯Êý¹ØϵʽÊÇS=5t2-8t+4£¬tµÄÈ¡Öµ·¶Î§ÊÇ0¡Üt¡Ü1£®
¢Ú½â£º¼ÙÉè´æÔÚµãR£¬¿É¹¹³ÉÒÔP¡¢B¡¢R¡¢QΪ¶¥µãµÄƽÐÐËıßÐΣ®
¡ßS=5t2-8t+4£¨0¡Üt¡Ü1£©£¬
¡àµ±S=
5 |
4 |
5 |
4 |
½âµÃt=
1 |
2 |
11 |
10 |
´ËʱµãPµÄ×ø±êΪ£¨1£¬-2£©£¬QµãµÄ×ø±êΪ£¨2£¬-
3 |
2 |
ÈôRµã´æÔÚ£¬·ÖÇé¿öÌÖÂÛ£º
£¨i£©¼ÙÉèRÔÚBQµÄÓұߣ¬Èçͼ£¨1£©Ëùʾ£¬ÕâʱQR=PB£¬RQ¡ÎPB£¬
ÔòRµÄºá×ø±êΪ3£¬RµÄ×Ý×ø±êΪ-
3 |
2 |
¼´R£¨3£¬-
3 |
2 |
´úÈëy=
1 |
6 |
1 |
3 |
¡àÕâʱ´æÔÚR£¨3£¬-
3 |
2 |
£¨ii£©¼ÙÉèRÔÚQBµÄ×ó±ßʱ£¬ÕâʱPR=QB£¬PR¡ÎQB£¬
ÔòR£¨1£¬-
5 |
2 |
1 |
6 |
1 |
3 |
×óÓÒ²»ÏàµÈ£¬¡àR²»ÔÚÅ×ÎïÏßÉÏ£®
×ÛÉÏËùÊö£¬´æÔÚÒ»µãR£¨3£¬-
3 |
2 |
Ôò´æÔÚ£¬RµãµÄ×ø±êÊÇ£¨3£¬-
3 |
2 |
£¨3£©Èçͼ£¨2£©£¬M¡äB=M¡äA£¬
¡ßA¹ØÓÚÅ×ÎïÏߵĶԳÆÖáµÄ¶Ô³ÆµãΪB£¬¹ýB¡¢DµÄÖ±ÏßÓëÅ×ÎïÏߵĶԳÆÖáµÄ½»µãΪËùÇóM£¬
ÀíÓÉÊÇ£º¡ßMA=MB£¬ÈôM²»ÎªLÓëDBµÄ½»µã£¬ÔòÈýµãB¡¢M¡¢D¹¹³ÉÈý½ÇÐΣ¬
¡à|MD|-|MB|£¼|DB|£¬
¼´Mµ½D¡¢AµÄ¾àÀëÖ®²îΪ|DB|ʱ£¬²îÖµ×î´ó£¬
ÉèÖ±ÏßBDµÄ½âÎöʽÊÇy=kx+b£¬°ÑB¡¢DµÄ×ø±ê´úÈëµÃ£º
|
½âµÃ£ºk=
2 |
3 |
10 |
3 |
¡ày=
2 |
3 |
10 |
3 |
Å×ÎïÏßy=
1 |
6 |
1 |
3 |
°Ñx=1´úÈëµÃ£ºy=-
8 |
3 |
¡àMµÄ×ø±êΪ£¨1£¬-
8 |
3 |
´ð£ºMµÄ×ø±êΪ£¨1£¬-
8 |
3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¹´¹É¶¨Àí£¬Æ½ÐÐËıßÐεÄÐÔÖÊ£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÈ֪ʶµã£¬½â´ËÌâµÄ¹Ø¼üÊÇ×ÛºÏÔËÓÃÕâЩ֪ʶ½øÐмÆË㣮´ËÌâ×ÛºÏÐÔÇ¿£¬ÊÇÒ»µÀÄѶȽϴóµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿