题目内容
下面是按一定规律排列的一列数:第1个数:a1=
| 1 |
| 2 |
| -1 |
| 2 |
第2个数:a2=
| 1 |
| 3 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
第3个数:a3=
| 1 |
| 4 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)4 |
| 5 |
| (-1)5 |
| 6 |
…
第n个数:an=
| 1 |
| n+1 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)2n-1 |
| 2n |
(1) 求出a1,a2,a3.
(2) 化简an=
| 1 |
| n+1 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)2n-1 |
| 2n |
分析:通过观察不难看出减数从第二个括号起与后面相乘结果是1,此题就迎刃而解了.
解答:解:(1)a1=0,a2=-
,a3=-
;
(2)an=
-(1+
)(1+
)(1+
)…(1+
),
=
-
×
×
×…×
×
,
=
-
.
| 1 |
| 6 |
| 1 |
| 4 |
(2)an=
| 1 |
| n+1 |
| -1 |
| 2 |
| (-1)2 |
| 3 |
| (-1)3 |
| 4 |
| (-1)2n-1 |
| 2n |
=
| 1 |
| n+1 |
| 1 |
| 2 |
| 4 |
| 3 |
| 3 |
| 4 |
| 2n |
| 2n-1 |
| 2n-1 |
| 2n |
=
| 1 |
| n+1 |
| 1 |
| 2 |
点评:通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.
练习册系列答案
相关题目