题目内容
【题目】如图,B、E、C,F在一条直线上,AB∥DE,AC∥DF,BE=CF,连接AD.
求证:四边形ABED是平行四边形.
【答案】见解析.
【解析】
由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.
证明:∵AB∥DE,AC∥DF,
∴∠B=∠DEF,∠ACB=∠F.
∵BE=CF,
∴BE+CE=CF+CE,
∴BC=EF.
在△ABC和△DEF中, ,
∴△ABC≌△DEF(ASA),
∴AB=DE.
又∵AB∥DE,
∴四边形ABED是平行四边形.
练习册系列答案
相关题目