题目内容
【题目】知识再现:
如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.
提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.
在平面直角坐标系中,已知点,.
(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.
(2)如图2,连接,求的长.
(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.
【答案】(1);(2)5;(3)
【解析】
(1)用待定系数法可求直线AB的解析式,由平移的性质可设直线A'B'的解析式为:,将点P坐标代入可求直线A′B′的解析式;
(2)由P(6,4),B(6,0),点B'坐标(9,0)可得BP⊥B'B,BP=4,BB'=3,由勾股定理可求B'P的长;
(3)由平行四边形的性质可得,AE=BE,当CE⊥CO时,CE的值最小,即CD的值最小,由中点坐标公式可求点E坐标,可求CE解析式,列出方程组可求点C坐标.
解:(1)设直线的解析式为:,过点两点,有
∴,∴
直线的解析式为: ,
把直线向右平移使它经过点
∴直线的解析式为,且过点
∴,∴
∴直线的解析式为
(2)∵直线交轴于点,交轴于点
∴当时,
当时,
∴点坐标,点坐标
∵,,点坐标
∴轴,,,
∴
(3)如图,设与的交点为,
∵四边形是平行四边形,
∴,,
∴要使取最小值,即的值最小,
由垂线段最短可得:当时,的值最小,即的值最小,
∵点,,且
∴点
∵,直线解析式为:
∴设解析式为,且过点
∴
∴
∴解析式为
∴联立直线和的解析式成方程组,得
解得:
∴点
练习册系列答案
相关题目