题目内容
【题目】解不等式组,并把解集表示在数轴上,并写出其整数解. .
【答案】解:解不等式x﹣3≤0,得:x≤3, 解不等式 + >1,得:x> ,
∴不等式组的解集为: <x≤3,
将不等式解集表示在数轴上如图:
则该不等式组的整数解为2,3.
【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,结合数轴可知其整数解.
【考点精析】本题主要考查了不等式的解集在数轴上的表示和一元一次不等式组的解法的相关知识点,需要掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )才能正确解答此题.
练习册系列答案
相关题目