题目内容
【题目】如图,是半径为1的的内接正十边形,平分
(1)求证:;
(2)求证:
【答案】(1)详见解析;(2)详见解析
【解析】
(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;
(2)设A1A2=x,得出OP=PA2=A1A2=x,A1 P=1-x,再代入中即可求出答案.
证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1
∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°
∴∠A1 P A2=72°,OP=PA2,
∴△A1A2P∽△A1OA2,
∴A1A22=A1PO A1
(2)设A1A2=x,
则OP=PA2=A1A2=x,
∴A1 P=1-x,
由(1)得A1A22=A1PO A1
∴,
∴,
解得,(负值舍去)
∴,
即
【题目】某市水费采用阶梯收费制度,即:每月用水不超过15吨时,每吨需缴纳水费a元,每月用水量超过15吨时,超过15吨的部分按每吨提高b元缴纳下表是嘉琪家一至四月份用水量和缴纳水费情况.根据表格提供的数据,回答:
月份 | 一 | 二 | 三 | 四 |
月用水量(吨) | 14 | 18 | 16 | 13 |
水费(元) | 42 | 60 | 50 | 39 |
(1)a= 元;b= 元;
(2)求月缴纳水费p(元)与月用水量t(吨)之间的函数关系式;
(3)若嘉琪家五月和六月的月缴水费相差24元,求这两月用水量差的最小值.
【题目】某日王老师佩戴运动手环进行快走锻炼两次锻炼后数据如下表,与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的倍.设王老师第二次锻炼时平均步长减少的百分率为.注:步数平均步长距离.
项目 | 第一次锻炼 | 第二次锻炼 |
步数(步) | ①_______ | |
平均步长(米/步) | ②_______ | |
距离(米) |
(1)根据题意完成表格;
(2)求.
【题目】如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
甲 | 乙 | 丙 | |
单价(元/米2) |
(1)当时,求区域Ⅱ的面积.
(2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,