题目内容
【题目】某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
九(1)班 | 100 | m | 93 | 93 | 12 |
九(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)直接写出表中m、n的值;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;
(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.
【答案】(1)94;95.5;(2)略;(3).
【解析】试题(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;
(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.
试题解析:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;
把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,
则中位数n=(95+96)=95.5;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);
(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,
画树状图,如图所示:
所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,
则P(另外两个决赛名额落在同一个班)==.