题目内容
5、用配方法解方程x2+8x+7=0,则配方正确的是( )
分析:本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
解答:解:∵x2+8x+7=0,
∴x2+8x=-7,
?x2+8x+16=-7+16,
∴(x+4)2=9.
∴故选A.
∴x2+8x=-7,
?x2+8x+16=-7+16,
∴(x+4)2=9.
∴故选A.
点评:此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解方程x2+mx+n=0时,此方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x-
| ||||
D、(x-
|