题目内容

【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.

(1)求证:△ABD是等边三角形;

(2)求证:BE=AF.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)连接BD,根据角平分线的性质可得∠BAD=60°,又因为AD=AB,即可证△ABD是等边三角形;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF.

(1)证明:连接BD,

∵∠BAC=120°,AD平分∠BAC

∴∠BAD=DAC=×120°=60°,

AD=AB,

∴△ABD是等边三角形;

(2)证明:∵△ABD是等边三角形,

∴∠ABD=ADB=60°,BD=AD,

∵∠DAC=BAC=60°,

∴∠DBE=DAF,

∵∠EDF=60°,

∴∠BDE=ADF,

BDEADF中,

∴△BDE≌△ADF(ASA),

BE=AF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网