题目内容

【题目】如图,矩形ABCD中,AB=2cm,BC=6cm,把△ABC沿对角线AC折叠,得到△AB′C,且B′C与AD相交于点E,则AE的长为cm.

【答案】
【解析】解:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC=6cm,CD=AB=2cm,
∴∠ACB=∠DAC.
由折叠的性质得:∠ACB=∠ECA,
∴∠DAC=∠ECA.
∴AE=CE,
设AE=x,则CE=x,DE=6﹣x,
在Rt△CDE中,DE2+CD2=CE2
即(6﹣x)2+22=x2
解得:x=
即AE=
所以答案是:
【考点精析】本题主要考查了矩形的性质和翻折变换(折叠问题)的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网