题目内容
【题目】如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,则过B、C两点直线的解析式是_____.
【答案】y=x+3 .
【解析】
先根据一次函数的解析式求出A、B两点的坐标,再作CD⊥x轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式.
∵一次函数y=-x+3中,
令x=0得:y=3;令y=0,解得x=4,
∴B的坐标是(0,3),A的坐标是(4,0),
如图,作CD⊥x轴于点D,
∵∠BAC=90°,
∴∠OAB+∠CAD=90°,
又∵∠CAD+∠ACD=90°,
∴∠ACD=∠BAO.
在△ABO与△CAD中,
,
∴△ABO≌△CAD(AAS),
∴OB=AD=3,OA=CD=4,OD=OA+AD=7,
则C的坐标是(7,4),
设直线BC的解析式是y=kx+b(k≠0),
根据题意得:,
解得,
∴直线BC的解析式是y=x+3.
故答案是:y=x+3.
练习册系列答案
相关题目