题目内容

如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=
1
2
∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=
5
5
,求BC和BF的长.
(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=
1
2
∠CAB.
∵∠CBF=
1
2
∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.

(2)过点C作CG⊥AB于G.
∵sin∠CBF=
5
5
,∠1=∠CBF,
∴sin∠1=
5
5

∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=
5

∵AB=AC,∠AEB=90°,
∴BC=2BE=2
5

在Rt△ABE中,由勾股定理得AE=
AB2-BE2
=2
5

∴sin∠2=
AE
AB
=
2
5
5
,cos∠2=
BE
AB
=
5
5

在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GCBF,
∴△AGC△ABF,
GC
BF
=
AG
AB

∴BF=
GC•AB
AG
=
20
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网