题目内容
如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.求∠B的度数.
如右图所示,
∵AM是切线,
∴OA⊥AM,
∴∠OAM=90°,
又∵BD⊥AM,
∴∠BDM=90°,
∴∠OAM=∠BDM,
∴AO∥BD,
∴∠AOC=∠BCO,∠AOB+∠OBC=180°,
又∵OB=OC,OC是∠AOB平分线,
∴∠OBC=∠OCB,∠BOC=∠AOC,
∴∠AOB=2∠OBC,
∴2∠OBC+∠OBC=180°,
∴∠OBC=60°.
答:∠B的度数是60°.
∵AM是切线,
∴OA⊥AM,
∴∠OAM=90°,
又∵BD⊥AM,
∴∠BDM=90°,
∴∠OAM=∠BDM,
∴AO∥BD,
∴∠AOC=∠BCO,∠AOB+∠OBC=180°,
又∵OB=OC,OC是∠AOB平分线,
∴∠OBC=∠OCB,∠BOC=∠AOC,
∴∠AOB=2∠OBC,
∴2∠OBC+∠OBC=180°,
∴∠OBC=60°.
答:∠B的度数是60°.
练习册系列答案
相关题目