题目内容
【题目】综合与实践
问题背景
折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):
操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;
操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.
解决问题
(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;
(2)请在图1中证明AP:PB=2:l.
发现感悟
若E为正方形纸片ABCD的边AD上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:
(3)如图2.若 =2.则= ;
(4)如图3,若=3,则= ;
(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.
【答案】(1)见解析;(2)见解析;(3)4;(4)6;(5)见解析.
【解析】分析:(1)由折叠可得,CM=EM,∠CMQ=∠EMQ,四边形CDEF是矩形,由CM=EQ,CM∥QE,可证四边形EQCM是平行四边形,进而证明四边形EQCM是菱形;
(2)设正方形ABCD的边长为1,CM=x,则EM=x,DM=1﹣x,在Rt△DEM中,由勾股定理可求得x的值,由△AEP∽△DME,列比例式求出AP的值,进而求出PB的值,从而结论可求;
(3)设正方形ABCD的边长为1,CM=x,则EM=x,DM=1﹣x,在Rt△DEM中,由勾股定理可得x的值,由△AEP∽△DME,可得AP的值和BP的值,进而求得结论.
(4)与(3)相同的方法求解即可;
(5)与(3)相同的方法求解即可;
详解:(1)由折叠可得,CM=EM,∠CMQ=∠EMQ,四边形CDEF是矩形,
∴CD∥EF,
∴∠CMQ=∠EQM,
∴∠EQM=∠EMQ,
∴ME=EQ,
∴CM=EQ,
又∵CM∥QE,
∴四边形EQCM是平行四边形,
又∵CM=EM,
∴四边形EQCM是菱形;
(2)如图1,设正方形ABCD的边长为1,CM=x,则EM=x,DM=1﹣x,
在Rt△DEM中,由勾股定理可得:EM2=ED2+DM2,
即x2=()2+(1﹣x)2,解得x=,
∴CM=,DM=,
∵∠PEM=∠D=90°,
∴∠AEP+∠DEM=90°,∠DEM+∠EMD=90°,
∴∠AEP=∠DME,
又∵∠A=∠D=90°,
∴△AEP∽△DME,
∴=,即,解得AP=,
∴PB=,
∴AP:PB=2:l.
(3)如图2,设正方形ABCD的边长为1,CM=x,则EM=x,DM=1﹣x,
在Rt△DEM中,由勾股定理可得:EM2=ED2+DM2,
即x2=()2+(1﹣x)2,解得x=,
即CM=,
∴DM=,
由△AEP∽△DME,可得
=,即,解得AP=,
∴PB=,
∴=4,
故答案为:4;
(4)如图3,同理可得AP=,PB=,
∴=6,
故答案为:6;
(5)根据问题(2),(3),(4),可得当(n为正整数),则.
理由:设正方形ABCD的边长为1,CM=x,则EM=x,DM=1﹣x,
在Rt△DEM中,由勾股定理可得:EM2=ED2+DM2,
即x2=()2+(1﹣x)2,解得x=,
∴DM=1﹣CM=,
由△AEP∽△DME,可得
=,即,解得AP=,
∴PB=,
∴.