题目内容
【题目】如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.
【答案】解: ∵AB=AC,
∴∠B=∠C,
∵BD=AD,
∴∠B=∠DAB,
∵AC=DC,
∴∠DAC=∠ADC=2∠B,
∴∠BAC=∠BAD+∠DAC=∠B+2∠B=3∠B,
又∠B+∠C+∠BAC=180°,
∴5∠B=180°,
∴∠B=36°,∠C=36°,∠BAC=108°
【解析】利用AB=AC,可得∠B和∠C的关系,利用AD=BD,可求得∠CAD=∠CDA及其与∠B的关系,在△ABC中利用内角和定理可求得∠B,进一步求得∠ABC,得到结果.
【考点精析】通过灵活运用三角形的内角和外角和等腰三角形的性质,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.
练习册系列答案
相关题目