题目内容

【题目】为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.
(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.
(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?
(3)在(2)的前提下,该企业决定投资不超过获得最大利润的 在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?

【答案】
(1)解:由题意y=x+1.5×2x+2(100﹣3x)=﹣2x+200
(2)解:由题意﹣2x+200≥180,

解得x≤10,

∵x≥8,

∴8≤x≤10.

∵x为整数,

∴x=8,9,10.

∴有3种种植方案,

方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷.

方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷.

方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷


(3)解:∵y=﹣2x+200,

﹣2<0,

∴x=8时,利润最大,最大利润为184万元.

设投资A种类型的大棚a个,B种类型的大棚b个,

由题意5a+8b≤ ×184,

∴5a+8b≤23,

∴a=1,b=1或2,

a=2,b=1,

a=3,b=1,

∴可以投资A种类型的大棚1个,B种类型的大棚1个,

或投资A种类型的大棚1个,B种类型的大棚2个,

或投资A种类型的大棚2个,B种类型的大棚1个,

或投资A种类型的大棚3个,B种类型的大棚1个


【解析】(1)总利润=三种蔬菜利润的总和,用x 的代数式分别表示三种利润即可;(2)由“总利润不低于180万元“可列不等式﹣2x+200≥180,取正整数解三个,就有三种方案;(3)由y=﹣2x+200(8≤x≤10),-2<0,y随x的增大而减小,故x=8时y最大=184万元,由题意列出不等式5a+8b≤ ×184,取整数解即可.
【考点精析】关于本题考查的一元一次不等式组的应用,需要了解1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网