题目内容

【题目】若顺次连结四边形各边中点所得的四边形是矩形,则原四边形(

A. 一定是矩形 B. 一定是菱形 C. 对角线一定相等 D. 对角线一定互相垂直

【答案】D

【解析】分析:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EFDB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EHAC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到ACBD垂直.

详解:

∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
AC⊥BD.


故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网