题目内容
【题目】如图,在等腰Rt△ABC中,AC=BC=2 ,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A. π
B.π
C.2
D.2
【答案】B
【解析】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图, ∵在等腰Rt△ABC中,AC=BC=2 ,
∴AB= BC=4,
∴OC= AB=2,OP= AB=2,
∵M为PC的中点,
∴OM⊥PC,
∴∠CMO=90°,
∴点M在以OC为直径的圆上,
点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,
∴M点的路径为以EF为直径的半圆,
∴点M运动的路径长= 2π1=π.
故选B.
【考点精析】通过灵活运用等腰直角三角形,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°即可以解答此题.
练习册系列答案
相关题目