题目内容
【题目】放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段, ≈1.414, ≈1.732,最后结果精确到1米).
【答案】解:作DH⊥BC于H,设DH=x米.
∵∠ACD=90°,
∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°= x,
在直角△BDH中,∠DBH=45°,BH=DH=x,BD= x,
∵AH﹣BH=AB=10米,
∴ x﹣x=10,
∴x=5( +1),
∴小明此时所收回的风筝的长度为:
AD﹣BD=2x﹣ x=(2﹣ )×5( +1)≈(2﹣1.414)×5×(1.732+1)≈8米
【解析】作DH⊥BC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AH﹣BH=AB得到一个关于x的方程,解方程求得x的值,进而求得AD﹣BD的长,即可解题.
练习册系列答案
相关题目