题目内容
【题目】以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处(注:∠DOE=90°).
(1)如图①,若直角三角板DOE的一边OD放在射线OB上,且∠BOC=60°,求∠COE的度数;
(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度数;
(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.
【答案】(1) 30°;(2) 65°;(3)见解析.
【解析】
(1)根据∠COE+∠DOC=90°求解即可;
(2)根据∠BOC+∠COD+∠DOE+∠AOE=180°求解即可;
(3)由OE恰好平分∠AOC,得∠AOE=∠COE,再根据平角的定义得∠COE+∠COD=∠AOE+∠BOD=90°即可得证.
(1)∵∠DOE=90°,∠BOC=60°,
∴∠COE=∠DOE-∠BOC=30°.
(2)设∠COD=x,则∠AOE=5x.
∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,
∴5x+90°+x+60°=180°,解得x=5°,即∠COD=5°.
∴∠BOD=∠COD+∠BOC=5°+60°=65°.
(3)∵OE平分∠AOC,∴∠AOE=∠COE.
∵∠DOE=∠COE+∠COD=90°,∠AOE+∠DOE+∠BOD=180°,
∴∠AOE+∠BOD=90°,又∠AOE=∠COE,
∴∠COD=∠BOD,
即OD所在射线是∠BOC的平分线.
练习册系列答案
相关题目