题目内容

【题目】如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

【答案】
(1)证明:∵Rt△OAB中,D为OB的中点,

∴AD= OB,OD=BD= OB

∴DO=DA,

∴∠DAO=∠DOA=30°,∠EOA=90°,

∴∠AEO=60°,

又∵△OBC为等边三角形,

∴∠BCO=∠AEO=60°,

∴BC∥AE,

∵∠BAO=∠COA=90°,

∴CO∥AB,

∴四边形ABCE是平行四边形


(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,

在Rt△ABO中,

∵∠OAB=90°,∠AOB=30°,BO=8,

∴AO=BOcos30°=8× =4

在Rt△OAG中,OG2+OA2=AG2

x2+(4 2=(8﹣x)2

解得:x=1,

∴OG=1


【解析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网