题目内容
【题目】(探究)如图1,在等边△ABC中,AB=4,点D、E分别为边BC、AB上的点,连结AD、DE,若∠ADE=60°,BD=3,求BE的长.
(拓展)如图2,在△ABD中,AB=4,点E为边AB上的点,连结DE,若∠ADE=∠ABD=45°,若DB=3,= .
【答案】【探究】BE=;【拓展】
【解析】
探究:过点A作AF⊥BC于F,由等边三角形的性质得出BF=CF=BC=2,由勾股定理求出AF=,则DF=BD-BF=1,由勾股定理求出AD=,证得△ABD∽△ADE,得出,解得AE=,即可得出结果;
拓展:过点A作AF⊥BC于F,易证△ABF是等腰直角三角形,则AF=BF=AB=2,DF=DB-BF=,由勾股定理求出AD=,证得△ADE∽△ABD,得出,求出AE=,BD=AB-AE=,则即可得出结果.
探究:∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC=4,
过点A作AF⊥BC于F,如图①所示:
则BF=CF=BC=2,AF=,
∴DF=BD-BF=3-2=1,
∴AD=,
根据三角形的内角和定理得,∠ADB+∠BAD=120°,
∵∠ADE=60°,
∴∠BAD+∠AED=120°,
∴∠ADB=∠AED,
∵∠B=∠ADE=60°,
∴△ABD∽△ADE,
∴,
即:,
解得:AE=,
∴BE=AB-AE=4-=;
拓展:过点A作AF⊥BC于F,如图②所示:
∵∠ABD=45°,
∴△ABF是等腰直角三角形,
∴AF=BF=AB=2,
∴DF=DB-BF=3-2=,
∴AD=,
∵∠ADE=∠ABD=45°,∠A=∠A,
∴△ADE∽△ABD,
∴,
∴AE=,
∴BD=AB-AE=4-=,
∴.
练习册系列答案
相关题目