题目内容
【题目】某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.
(1)求A型设备和B型设备的单价各是多少万元;
(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?
【答案】(1)A型设备的单价是80万元,B型设备的单价是50万元;(2)最多可购买A型设备16套.
【解析】
(1)设A型设备的单价是x万元,B型设备的单价是y万元,根据“购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进A型设备m套,则购进B型设备(50-m)套,根据总价=单价×数量结合预算资金不超过3000万元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
(1)设型设备的单价是万元,型设备的单价是万元,
依题意,得:,
解得:.
答:型设备的单价是80万元,型设备的单价是50万元.
(2)设购进型设备套,则购进型设备套,
依题意,得:,
解得:.
为整数,
的最大值为16.
答:最多可购买型设备16套.
【题目】某商场同时购进甲、乙两种商品共200件,其进价和售价如表,
商品名称 | 甲 | 乙 |
进价(元/件) | 80 | 100 |
售价(元/件) | 160 | 240 |
设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.
(1)求y与x的函数关系式;
(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
【题目】小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:
类别 次数 | 购买A商品数量(件) | 购买B商品数量(件) | 消费金额(元) |
第一次 | 4 | 5 | 320 |
第二次 | 2 | 6 | 300 |
第三次 | 5 | 7 | 258 |
解答下列问题:
(1)第 次购买有折扣;
(2)求A、B两种商品的原价;
(3)若购买A、B两种商品的折扣数相同,求折扣数;
(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.