题目内容
【题目】如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
【答案】(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
练习册系列答案
相关题目
【题目】某中学开展“英语演讲”比赛活动,八年级(1),(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示,
(1)根据图示填写下表:
班级 | 平均数(分) | 中位数(分) | 众数(分) |
八(1) | ______ | 85 | ______ |
八(2) | 85 | ______ | 100 |
(2)计算两班复赛成绩的方差并说明哪版的成绩比较稳定.(方差公式:S2=])