题目内容
【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为a2(a>1).将正方形ABCD在数轴上水平移动,移动后的正方形记为A′B′C′D′,点A、B、C、D的对应点分别为A′、B′、C′、D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=a时,数轴上点A′表示的数是_____.(用含a的代数式表示)
【答案】﹣a或a﹣2
【解析】
根据正方形的面积可得边长进而可以表示点A′表示的数.
∵正方形ABCD的面积为a2(a>1).
∴边长为a,
当S=a时,分两种情况:
若正方形ABCD向左平移,如图1,
A′B′=AB=BC=a,
A′B=1,
∴AA′=AB﹣A′B=a﹣1,
∴OA′=OA+AA′=1+a﹣1=a,
∴数轴上点A′表示的数为﹣a;
如正方形ABCD向右平移,如图2,
AB′=1,AA′=a﹣1,
∴OA′=(a﹣1)﹣1=a﹣2
∴数轴上点A′表示的数为a﹣2.
综上所述,数轴上点A′表示的数为﹣a或a﹣2.
练习册系列答案
相关题目