题目内容

【题目】某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+n.
(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n=
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.

【答案】
(1)500
(2)解:由题意,得:w=(x﹣20) y,

=(x﹣20) (﹣10x+500)=﹣10x2+700x﹣10000,

令:﹣10x2+700x﹣10000=2000,

解这个方程得:x1=30,x2=40(舍).

答:李明想要每月获得2000元的利润,销售单价应定为30元


(3)解:由(2)知:w=﹣10x2+700x﹣10000,∴

∵﹣10<0,∴抛物线开口向下.

∵x≤32∴w随x的增大而增大.

∴当x=32时,w最大=2160.

答:销售单价定为32元时,每月可获得最大利润,最大利润为2160元


【解析】解:(1)∵y=﹣10x+n,当销售单价x定为25元时,李明每月获得利润为w为1250元,

∴则W=(25﹣20)×(﹣10×25+n)=1250,

解得:n=500;

故答案为:500.

(1)利润=销售量乘以每件的利润可求出;
(2)由利润=销售量乘以每件的利润(销售量y=-10x+n)得到w关于x的二次函数,再由w=2000得到关于x的一元二次方程,求解可得符合条件的x值;
(3)由(2)得到w关于x的二次函数,根据二次函数的性质可求出函数的定价和最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网