题目内容
【题目】如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.
(1)直接写出∠AHE,∠FAH,∠KEH之间的关系:________;
(2)若∠BEF=∠BAK,求∠AHE;
(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.
【答案】(1)∠AHE=∠KEH+∠FAH;(2)75°;(3)t=6、12、21、24、30.
【解析】
(1)根据平行线的性质和三角形的外角性质可得答案;
(2)设∠BEF=x,用x分别表示出∠BAK、∠BEC、∠BAK、∠KAG、∠AME和∠AHE,再由AG⊥BE,得关于x的方程,解得x的值,则问题可解;
(3)由(2)可得,∠KHE=105°,再分4种情况列方程求解即可:①当KH∥EN时;②当kE∥GN时;③当HE∥GN时;④当HK∥GN时.
解:(1)∵AB∥CD
∴∠KEH=∠AFH
∵∠AHE=∠AFH+∠FAH
∴∠AHE=∠KEH+∠FAH
故答案为: ∠AHE=∠KEH+∠FAH
(2)设∠BEF=x
∵∠BEF= ∠BAK,∠BEC=2∠BEF
∴∠BAK=∠BEC=2x
∵AK平分∠BAG
∴∠BAK=∠KAG=2x
由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x
∵AG⊥BE
∴∠G=90°
∴∠AME+∠KAG=2x+4x=90°
∴x=15°
∴∠AHE=5x=75°;
(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°
①当KH∥NG时
5°×t=60°-30°=30°
∴t=6
②当KE∥GN时
5°×t=60°
∴t=12
③当HE∥GN时
5°×t=45°+60°=105°
∴t=21
④当HK∥EG时,
5°×t=180°-30°-30°=120°
∴t=24
⑤当HK∥EN时,5t=150°
∴t=30
综上所述,t的值为:6或12或21或24或30.