题目内容

【题目】为预防传染病,某校定期对教室进行药熏消毒.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:

1)分别求出药物燃烧时及燃烧后 关于的函数表达式.

2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?

3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.

【答案】1;(2)第分至分内消毒人员不可以留在教室里;(3)本次消毒有效.

【解析】

(1)设燃烧时药物燃烧后yx之间的解析式y=ax,药物燃烧后yx之间的解析式y=,把点(108)代入即可;

(2)y=1.6代入函数解析式,求出相应的x

(3)y=3.2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与20进行比较,大于等于20就有效;

1)设燃烧时药物燃烧后yx之间的解析式y=ax,点(108)代入,得

10a=8

a=,

;

药物燃烧后yx之间的解析式y=,把点(108)代入,得

k=80,

;

2)把代入可得

代入可得

根据图象,当时,

即从消毒开始后的第分至分内消毒人员不可以留在教室里.

3)把代入可得

代入可得

本次消毒有效.

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网