题目内容
【题目】如图,已知,为线段上的一个动点,分别以,为边在的同侧作菱形和菱形,点,,在一条直线上,,、分别是对角线,的中点,当点在线段上移动时,线段的最小值为________.
【答案】
【解析】
连接QC、PC,先证明∠PCQ=90°,设AC=,则BC=,PC=,CQ=(),构建二次函数,利用二次函数的性质即可解决问题.
连接PC、CQ.
∵四边形ACED,四边形CBGF是菱形,∠D=120°,
∴∠ACE=120°,∠FCB=60°,
∵P,Q分别是对角线AE,BF的中点,
∴∠ECP=∠ACP=∠ACE=60°,∠FCQ=∠BCQ=∠BCF=30°,
∴∠PCQ=90°,
设AC=,则BC=,PC=AC=,CQ=BC=(),
∴,
∴当时,线段PQ有最小值,最小值为.
故答案为:.
练习册系列答案
相关题目
【题目】某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:
销售方式 | 直接销售 | 粗加工后销售 | 精加工后销售 |
每吨获利/元 | 100 | 250 | 450 |
现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行)。
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:
销售方式 | 全部直接销售 | 全部粗加工销售 | 尽量精加工,剩 余部分直接销售 |
获利/元 |
(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?
(3)如果要求蔬菜都要加工后销售,且公司获利不能少于42200元,问:至少将多少吨蔬菜进行精加工?