题目内容
【题目】如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是( )
A. 45°B. 60°C. 50°D. 25°
【答案】C
【解析】
首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,继而求得答案.
连接AC,
∵MN是AE的垂直平分线,
∴AC=EC,
∴∠CAE=∠E,
∵AB+BC=BE,BC+EC=BE,
∴AB=EC=AC,
∴∠B=∠ACB,
∵∠ACB=∠CAE+∠E=2∠E,
∴∠B=2∠E,
∴∠BAC=180°∠B∠ACB=180°4∠E,
∵∠BAE=∠BAC+∠CAE=180°4∠E+∠E=105°
解得:∠E=25°,
∴∠B=2∠E=50°.
故选:C.
练习册系列答案
相关题目