题目内容

【题目】如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )

A.8
B.10
C.12
D.14

【答案】B
【解析】解:∵四边形ABCD是平行四边形,

∴AD∥BC,DC=AB=6,AD=BC,

∴∠AFB=∠FBC,

∵BF平分∠ABC,

∴∠ABF=∠FBC,

则∠ABF=∠AFB,

∴AF=AB=6,

同理可证:DE=DC=6,

∵EF=AF+DE﹣AD=2,

即6+6﹣AD=2,

解得:AD=10;

所以答案是:B.

【考点精析】利用平行线的性质和等腰三角形的性质对题目进行判断即可得到答案,需要熟知两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网